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Abstract 

Greenhouse gas emissions are increasing ocean temperatures and the partial pressure of CO2 

(pCO2), resulting in more acidic waters. It is presently unknown how elevated temperature and 

pCO2 will influence the early life history stages of the majority of marine coastal species. We 

investigated the combined effect of elevated temperature (30°C control and 32°C treatment) and 

elevated pCO2 (450 µatm control and 1100 µatm treatment) on the (i) growth, (ii) survival, (iii) 

condition, and (iv) morphology of larvae of the commercially important Florida stone crab, 

Menippe mercenaria. At elevated temperature, larvae exhibited a significantly shorter molt stage, 

and elevated pCO2 caused stage-V larvae to delay metamorphosis to post-larvae. On average, 

elevated pCO2 resulted in a 37% decrease in survivorship relative to the control; however the 

effect of elevated temperature reduced larval survivorship by 71%. Exposure to both elevated 

temperature and pCO2 reduced larval survivorship by 80% relative to the control. Despite this, no 

significant differences were detected in the condition or morphology of stone crab larvae when 

subjected to elevated temperature and pCO2 treatments. Although elevated pCO2 could result in a 

reduction in larval supply, future increases in seawater temperatures are even more likely to 

threaten the future sustainability of the stone-crab fishery.  
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1. Introduction 44 

At the current rate of fossil-fuel emissions, the partial pressure of CO2 in seawater (pCO2) is 

expected to increase from 400 µatm to 700–1000 µatm by the year 2100 (IPCC, 2013), resulting 

in a decrease in pH of 0.41 units. This process is often referred to as ocean acidification (Caldeira 

and Wickett, 2003). In addition, many coastal marine habitats are experiencing an accelerated 

rate of change in carbonate chemistry because of increased urbanization, coastal development, 

and wetland degradation (Bauer et al., 2013). Such activities are increasing nutrient-rich runoff, 

which when coupled with the degradation of organic material can cause elevated seawater pCO2 

events in coastal habitats (Bauer et al., 2013; Melzner et al., 2013; Ekstrom et al., 2013; Wallace 

et al., 2014). As a result, some coastal ecosystems are already experiencing conditions that either 

exceed critical thresholds for organisms, or have moved outside the range of normal pH 

conditions (Hauri et al., 2013; Harris et al., 2013). Increasing atmospheric CO2 also 

simultaneously warms the oceans. By 2100, the ocean temperatures are expected to increase by 

2–4°C (IPCC, 2013). The combined effect of anthropogenic CO2 and elevated ocean temperature 

will pose challenges for less tolerant marine organisms, resulting in local extinction of numerous 

marine species and changes in global distribution patterns (Pörtner et al., 2005).  

 

Single-stressor studies on the tolerances of marine crustaceans to elevated pCO2 have resulted in 

variable responses (i.e., positive, negative, mixed, and sometimes neutral), which also depend on 

the geographic location of the population (Walther et al., 2010) and the taxa studied (Ries et al., 

2009; Kroeker et al., 2013). Many populations living in intertidal and coastal habitats, which 

experience frequent and extreme fluctuations in seawater physico-chemical factors, are thought to 

have the physiological and behavioral mechanisms necessary to tolerate future seawater changes 
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(Widdicombe and Spicer, 2008; Melzner et al., 2009; Whiteley, 2011; Byrne, 2011). Early life-

history stages can, however, exhibit more sensitivity to changing environmental conditions than 

adult conspecifics (Whiteley, 2011). For example, acidified seawater did not alter metabolic rates 

in the adult green porcelain crab Petrolisthes cinctipes (Paganini et al., 2014), however the 

conspecific embryos exhibited slower metabolic rates under the same treatment (Carter et al., 

2013). Similarly, juvenile porcelain crabs showed reduced survivorship when exposed to elevated 

pCO2 conditions (Ceballos-Osuna et al., 2013). The varying sensitivity of crustacean life stages 

to elevated pCO2 is likely the result of their ability to regulate blood hemolymph (i.e., the acid-

base balance), which can disrupt enzymes and hormones that are necessary for molting, and can 

lead to abnormalities, including reduced body size (mass), calcification and morphological 

deformities (Kurihara et al., 2008; Arnold et al., 2009; Walther et al., 2010; Coffey et al., 2017). 

These CO2-associated morphological changes may in turn negatively impact larval survival by 

altering swimming behaviors, including the ability to regulate buoyancy, maintain vertical 

position, and avoid predators (Sulkin, 1984; Morgan, 1989). 

 

Temperature is one of the most critical environmental factors that can impact larval survival, molt 

stage duration, and development of crustaceans (Costlow et al. 1960, Naylor 1965). The impact 

of elevated seawater pCO2 on crustaceans may become even more extreme in the context of 

ocean warming, as elevated temperature accelerates metabolism, and destabilizes proteins 

(Costlow and Bookhout, 1971; Pörtner, 2008; Byrne, 2011). Additionally, extreme temperatures 

limit oxygen supply (Pörtner et al., 2006), which can impact metabolism, and eventually lead to 

acidosis (Rahn, 1966; Rastrick et al., 2014). The effects of acidosis can be intensified under 

elevated seawater pCO2, leading to hypercapnia and the impairment of oxygen transport systems 

(Pörtner and Farrell, 2008; Melzner et al., 2013). Increases in temperature significantly affect 
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some crustacean larvae (i.e., Sesarma, Callinectes, Menippe spp.) by shortening molt-stage 

durations, reducing survivorship, and resulting in smaller individuals (Costlow et al., 1960; Ong 

and Costlow, 1970; Leffler, 1972). For example, early stage C. sapidus larvae exhibited a 15% 

decrease in survivorship when exposed to increased temperatures (Costlow and Bookhout 1960). 

Reductions in size under elevated temperatures are the result of individuals passing through larval 

development too quickly to accumulate sufficient lipid reserves to sustain additional growth 

(Swingle et al. 2013). Furthermore, certain enzymes within crustacean larvae may only be active 

at certain temperatures, and at elevated temperatures these pathways may be not operating 

efficiently (Costlow and Bookhout 1971). Therefore, determining both the effects of elevated 

temperature and pCO2 on early life stages of crustaceans are necessary to realistically determine 

species responses to conditions projected by the end of the century. Understanding the influences 

of such environmental changes is particularly relevant for fisheries species. 

 

The stone crab, Menippe mercenaria, contributes ~$30 million a year to Florida’s economy 

(Florida Fish and Wildlife Conservation Commission Stock Assessments, 1998–2016). From 

1998–2016, the mean annual commercial catch has declined from 3.5 to 2.7 million pounds of 

claws per year (Florida Fish and Wildlife Conservation Commission Stock Assessments 1998–

2016). Much of the stone crab life-cycle, including embryonic development, larval release, and 

post-larval recruitment, occurs within coastal regions (Lindberg and Marshall, 1984; Krimsky 

and Epifanio, 2008; Krimsky et al., 2009; Gandy et al., 2010). These coastal habitats are also 

threatened by local human activities. Land-use change along parts of Florida’s coastline is 

resulting in nutrient-rich runoff, which will likely amplify nearshore acidification (Bauer et al., 

2013) and influence all coastal marine life. Despite living in environments that experience 

fluctuations in carbonate chemistry, part of the stone crab’s life cycle shows sensitivity to 
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seawater acidification. For example, stone crab embryonic development is slower and hatching 

success is reduced when embryos are exposed to lower ocean pH (Gravinese, 2018). Therefore, it 

is possible that other components of their life-cycle may also be sensitive. We tested the 

hypotheses that elevated pCO2 (~400 and 1100 μatm), elevated temperature (30°C and 32°C), 

and their combined effect results in reduced survivorship of stone-crab larvae. Because stone 

crabs (particularly those in coastal environments) already experience seasonal extremes in pH 

that are on par with the lower range of expected pCO2 for the end of the century, we considered 

using the upper estimate of expected pCO2 most appropriate for our study. We also tested the 

hypothesis that those same treatments will result in smaller and morphologically deformed larvae.  
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2. Materials and Methods 125 

2.1 Stone crab ovigerous female collection 126 

Ovigerous females were collected by Florida Fish and Wildlife using commercial stone crab traps 

near Pavilion Key (25°69.79 N, 81°35.51 W), Florida during the 2014 and 2015 summers (May–

August). Females were immediately transported back to the University of Miami’s Rosenstiel 

School’s Ocean Acidification Laboratory and were maintained in ambient seawater conditions 

until larval release. In 2014, larvae that were hatched from 8 different broods were individually 

raised so that we could measure survivorship and molt-stage duration. In 2015 we mass-reared 

larvae from which we harvested groups of individuals at certain developmental stages to conduct 

larval condition (n = 13 broods for stage III, and 8 broods for stage V) and morphology analyses 

(n = 6 broods for stage III and 7 broods for stage V). Immediately following release, newly 

hatched larvae were randomly assigned into each of the experimental treatments described below 
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and larvae from the same brood (i.e., the replicates) were divided among the treatments levels 

throughout all experiments.  
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 139 

2.2 Experimental design and ocean acidification (OA) system set-up 140 

All experiments consisted of two fully-crossed treatment parameters (i.e., temperature and pCO2), 

each with two levels, resulting in a total of four different treatments. The two temperature levels 

were set at 30°C and 32°C. The lower (control) temperature was based on the mean summer sea 

surface temperature for the Long Key C-MAN station, in Florida Bay over 1992–2008 years 

(NOAA National Data Buoy Center, 2016). The upper temperature was based on IPCC (2013) 

sea-surface temperature projections for the end of the century. The control pCO2 level was ~450 

μatm and corresponded to similar levels at the site of collection (Table 1). The elevated pCO2 

level was set at ~1100 μatm and was based on current IPCC (2013) projections. To achieve the 

control pCO2 level, seawater was passed through a sand filter and a 100 µm mesh filter prior to 

being pumped into the holding reservoirs. Seawater entering the holding reservoir was vigorously 

aerated until the reservoir was maintained at ~450 μatm. Elevated pCO2 treatments were achieved 

by pumping seawater into a separate holding reservoir where pure CO2 gas was added using 

venturi injectors and mass flow controllers (MFC; SmartTrak 100, Sierra). Control and elevated-

pCO2 water was then pumped into each of the separate experimental aquaria (7.5 L). 

Temperature within each experimental aquarium was regulated using heaters and temperature 

probes, constantly monitored and maintained by AquaControllers (Apex System, Neptune). To 

avoid shock to the larvae, the use of MFCs and the digitally controlled temperature system 

allowed us to gradually increase the experimental parameters (~200 μatm and ~0.4 °C per day) to 

the desired treatment levels over the first 5 days (“ramp-up period”) of each experiment.  
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2.3 Seawater Carbonate Chemistry 161 

To monitor the carbonate chemistry of the OA system, seawater samples were collected from 

both the holding reservoirs and from each experimental aquaria in 150 mL borosilicate bottles, 

and were immediately fixed with 100 μL of saturated mercuric chloride. Total alkalinity (AT) and 

dissolved inorganic carbon (DIC) were measured at NOAA’s Atlantic Oceanographic and 

Metrological Ocean Acidification Laboratory using Apollo SciTech instruments (AS-ALK2 and 

AS-C3, respectively) as described by Enochs et al. (2015). Alkalinity and DIC samples were 

checked for accuracy with certified reference materials (Dickson et al., 2003, Scripps Institution 

of Oceanography, La Jolla, CA). Carbonate parameters were monitored every other day during 

the first week of the experiment, and every 5–7 days thereafter. The pH total scale within each 

experimental aquarium was also measured daily using a handheld pH meter (Oakton) and Ross 

electrode (Orion 9102BWNP; Thermoscientific), which was calibrated using Tris buffer.   

 

To calculate pCO2, both AT and DIC were measured during survivorship and molt-stage duration 

experiments (2014), while AT and pH were measured during the larval condition, and 

morphology experiments (2015). The change in the carbonate parameters between the 2014 and 

2015 research season was the result of the DIC analyzer malfunctioning during the 2015 research 

season. Using AT, DIC, and pH, allowed the remaining carbonate parameters (DIC, and/or pCO2) 

to be determined using CO2SYS software (Robbins et al., 2010). Temperature and salinity of 

each experimental aquarium were also monitored twice daily throughout all experiments (Orion 

Ecostar). The carbonate chemistry of seawater samples collected at the site of ovigerous female 

collection were also analyzed for DIC and TA. Collection of field samples allowed us to model 

the control pCO2 levels within the range of the pCO2 at field collection sites. All field samples 

were collected between 08:00–12:00 throughout the 2014 (N = 17) and 2015 (N = 10) 
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experimental season. All control/ambient pCO2 levels were within ranges reported for other stone 

crab habitats (Millero et al., 2001; Dufroe, 2012). 

185 
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 187 

2.4 Stone crab larval survivorship and molt-stage duration  188 

Experiments determining the effects of elevated temperature and pCO2 on larval survivorship and 

molt-stage duration (MSD) were conducted on larvae reared individually in clear acrylic 

compartmentalized boxes (80 ml), with the plastic bottoms replaced with nylon mesh (190 µm). 

Each box was kept in its own water bath to maintain constant experimental temperatures. Larvae 

(n = 46 per treatment level) from each ovigerous female were placed within each treatment level 

(i.e., A30, H30, A32, and H32) and were monitored in the boxes to determine the treatment 

effects on survivorship and MSD. Larvae used during survivorship and MSD experiments came 

from eight independent broods, and each brood served as a replicate. Ovigerous females were 

only used once in our experiments. Prior to feeding larvae, Artemia were enriched with a lipid 

diet (Selco, Brine shrimp direct, UT) and fed enriched rotifers. Rotifers that were fed to Artemia 

were also enriched with a high protein lipid diet (One Step, Rotigrow, CA). After enrichment, the 

Artemia were pipetted into each larval chamber (30–40 per individual larval chamber). Larvae 

were kept on a 14 hr light: 10 hr dark photoperiod that approximated conditions during the time 

of collection. Survivorship and MSD were monitored by counting exuvia (i.e., molts) and dead 

larvae at the same time each day. Survivorship was defined as the proportion of individuals that 

survived from birth to the post-larvae stage, and survival was defined as the chance that an 

individual will survive to the next stage.  
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2.5 Larval Condition 207 
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Stage I and Stage II larvae never experienced the full experimental treatment conditions (due to 

gradual ramping up to experimental set points), and therefore, were not used in AFDW analyses. 

The AFDW experiments used larvae from different broods (i.e., 13 broods for stage III, and 8 

broods for stage V), and each brood served as a replicate. A pooled sample, consisting of 50 

individuals, was used for stage III larvae, and a pooled sample, consisting of 10 individuals, were 

used for stage V larvae. The larval dry weight (DW) and ash free dry weight (AFDW) of stage III 

and V were measured during the 2015 summer using protocols adapted from Nates and 

McKenney (2000). Larvae were reared in 9L plastic chambers whose sides were composed of 

nylon mesh to allow for exposure to the treatment conditions. The initial stocking density for 

each larval rearing chamber was 500 larvae (0.05 larvae per ml). After harvesting, larvae were 

briefly rinsed, blotted dry on filter paper, and then oven-dried at 60°C for 30 hrs. After being 

dried, the dry weight per group of larvae was determined using an ultra-microbalance (precision 

= 0.1 µg; Mettler Toledo UMX2). After measuring dry weight, each sample was combusted (> 

450°C) for 12 hrs and reweighed. The AFDW was calculated by subtracting the mass of the ash 

from the total dry weight.  
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2.6 Larval morphology 224 

To determine the potential effect of elevated pCO2 and temperature on larval morphology (n ~ 

10) stage III and V larvae were harvested and fixed in 3% glutaraldehyde in 0.1 M phosphate 

buffer at room temperature (Felgenhauer and Abele, 1983). Stage I and stage II larvae never 

experienced the full experimental treatment set points, and therefore were not used in 

morphological analyses in these experiments. After preservation of larvae, a Scanning Electron 

Microscope (SEM; JEOL JSM-6380LV) was used to take digital images of larvae using methods 

described by Felgenhauer and Abele (1983). To determine if any differences existed in spination 
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or size among treatments, larvae were photographed so that the telson spine length (TS), rostrum 

spine length (RS), dorsal spine length (DS), carapace width (CW), carapace height (CH), whole 

length (WL), and tail length (TL) could be measured (ImageJ software, Schneider et al., 2012) 

from digital SEM micrographs (37x, Figure 1). Prior to measurement, digital images of stage III 

and V larvae were calibrated in ImageJ by determining the number of pixels within the 

micrometer scale provided by the SEM. The CW was defined as the distance from the base of the 

rostral spine to the midpoint of the posterior lateral margin of the carapace (Long et al., 2013). 

The CH was defined as the distance from the base of the dorsal spine to the ventral edge of the 

carapace (Long et al., 2013). We used larvae from six and seven different broods (replicates) for 

stage III and stage V larvae respectively.   

232 

233 

234 

235 

236 

237 

238 

239 

240 

241 

 242 

2.7 Data analysis 243 

The effect of different treatments on survivorship was determined using a failure-time analysis 

(Cox Proportional Hazard Model), with larval death serving as the ‘event’, and time since the 

beginning of the experiment as the ‘time until an event occurs’. The Cox regression coefficients 

(i.e., hazard ratio) were used to estimate the likelihood an individual larva would die under the 

experimental treatments. Survivorship and MSD experiments were replicated using larvae from 

eight independent broods (N = 8). To control for variation among broods, larvae from the same 

female were treated as covariates in the analysis. Comparisons of survivorship among treatments 

were made using a Log-rank (LR) test.  

 

Stage-specific survival was calculated by dividing the number of larvae surviving at each stage 

by the initial number of larvae that started each stage. The stage-specific survival did not meet the 

assumptions of normality and were therefore rank transformed. A repeated measures analysis of 
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variance (ANOVAR) was then run on the ranked data, with temperature and CO2 as the main 

effects, and brood as the within subject factor.  The results were Bonferroni corrected to set the 

alpha level at 0.01, because the stage-specific analysis required five separate tests. Differences 

among treatments in the molt-stage duration for each larval stage were determined using an 

ANOVAR with temperature and CO2 as the main effects, and brood as the within subject factor.  

 

Differences in the mean DW and AFDW for each treatment combination were tested using an 

ANOVAR with temperature and CO2 as the main effects, and brood as the within subject factor. 

Because of the high degree of shared variability among morphological features, principle 

component analysis (PCA) was used to establish a new set of orthogonal variables that were 

compared among treatment groups. The contribution of the new variables was determined based 

on the largest factor loadings for each principle component. The point of inflection on the scree-

plot was used to determine the number of PCs to retain. The derived component scores were then 

analyzed using separate ANOVARs (with brood as a within subject factor) to determine if larval 

morphology differed among treatments. All statistical analyses were performed using R (R Core 

Team, 2016).  
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3. Results  273 

3.1 Seawater Chemistry 274 

After pCO2 and temperature were gradually increased to the experimental set points, the control’s 

(i.e., ambient temperature and ambient pCO2; hereafter will be referred to as A30) mean pCO2 

levels were maintained within a narrow range among all treatments (Table 1). Temperature, 

salinity, and total alkalinity (AT) also showed little variability after the gradual increase to the 
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experimental set points, for the 2014 and 2015 summer research seasons (Table 1). The pH was 

lower in the elevated pCO2 treatments (Table 1).  

279 

280 

 281 

3.2 Larval survival and development  282 

Survivorship to megalopae was significantly reduced in all treatments (A32, H30, H32) relative 

to the control (A30, LR7 = 272.3, P < 0.001; Fig. 1). There was a 19% absolute decrease in larval 

survival between the H30 and the control (relative decrease of 37% between treatments; Fig. 1). 

The Cox regression coefficients (i.e., hazard ratios) were used to express the likelihood an 

individual would die under the experimental treatments. The hazard ratios indicated that larvae 

raised in the H30 treatment were 1.5 times more likely to die than larvae raised in ambient 

conditions (A30). Elevated temperature (A32) resulted in a 36% absolute reduction in survival to 

megalopae relative to the control, which was almost double the effect of elevated pCO2 (relative 

decrease of 71% between treatments; Fig. 1). The combination of both elevated temperature and 

pCO2 (H32) resulted in a 41% absolute decrease in individuals surviving to megalopae relative 

to the control (relative decrease of 80% between treatments; Fig. 1). A comparison of the hazard 

ratios indicated that mortality was more likely in the A32 and H32 conditions (3.3 and 3.7 times, 

respectively) than in the control. Pairwise comparisons (log-rank test) indicated that survivorship 

was significantly lower than the control in all treatments, however, larval survivorship in the 

A32 and H32 were not significantly different from each other (S1). Female brood (covariate) 

2
was observed to have a significant effect on survivorship (Wald χ  = 45.2, df = 7, P < 0.001).  

 

Comparisons were also made to determine if there were differences in the stage-specific survival 

among treatments. The two main effects showed no significant impact on the stage-I survival (S1, 
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Fig. 2), and there was a significant within-subject (female) effect in stage-I larvae (S1). Stage II 

larvae had a significantly lower median stage-specific survival in the A32 and H32 treatments 

(i.e., both elevated temperature treatments were ~5.5% lower than the ambient temperature 

treatments; S1). Relative to the control, the median stage-specific survival for stage III larvae was 

also significantly lower by 17% and 31% in the A32 and H32 treatments, respectively (S1, Fig. 

2). Stage IV larvae exhibited significant differences in both main effects (S1). Stage IV larvae 

raised in the H30, A32, and H32 treatments showed decreases in survival of 12%, 31%, and 43%, 

respectively, when compared to the control. The stage-specific survival of stage-V larvae showed 

significant differences among the main effects, with the greatest overall decrease in survival 

compared with the other larval stages (S1, Fig. 2). Relative to the control, the stage-V larvae 

showed a decrease in survival in the H30, A32, and H32 treatments by 19%, 46%, and 53%, 

respectively.  

 

Molt-stage durations (MSD) were significantly shorter in the elevated temperature treatments 

(A32 and H32; S2, Fig. 3). Larvae in the elevated temperature treatment molted ~0.8–1.2 days 

earlier than larvae raised in the control. There was no effect of elevated pCO2 on larval MSD 

until stage V, where development was almost 1 day longer than larvae in the control (0.78 days; 

S2, Fig. 3). Stage V larvae also had a significant interaction effect among the treatments (S2). 
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 320 

3.3 Larval Condition 321 

The mean DW for stage-III larvae (13 broods used as replicates) showed no significant difference 

-1
among treatments and on average ranged from 88.5–96.0 µg individual  (S2). There was no 

interaction effect between temperature and pCO2 for stage III DW; however, there was a 

significant within subject effect (S2). AFDW for stage-III larvae (13 broods used as replicates) 
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-1
was within a narrow range (56.0–59.0 µg individual ), and did not differ among treatments (S2). 

There was no interaction effect between temperature and pCO2 for stage III AFDW; however, 

there was a significant within-subject effect (S2). The DW for stage V larvae (8 broods used as 

replicates) showed no significant difference among treatments and on average ranged from 241–

-1
277 µg individual  (S2). There was no interaction effect between temperature and pCO2 for stage 

-1
V DW; however, there was a significant within subject effect (S2). The AFDW (µg individual ) 

for stage V larvae showed no significant differences among the main effects (S2) and was also 

-1
within a narrow range (165–182 µg individual ). There was no interaction effect, however, there 

was a significant within-subject effect (S2). 
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 335 

3.4 Larval Morphology  336 

PCA analysis on the morphological measurements of stage III larvae resulted in three principle 

components (PC’s) representing 91.9% of the variation in the data (S3). The PC 1 loadings were 

negatively associated with all morphometric measurements, and were interpreted as 

representative of the overall larval size (whole length). The loadings for PC 2 were associated 

with the dorsal spine, whereas the loadings for PC 3 were interpreted as being the carapace 

height. PCA analysis on the morphological measurements of stage V larvae resulted in two PC 

representing 94.7% of the variation (S4). The PC 1 loadings were also negatively associated with 

all morphometric measurements. The loadings for PC 2 were associated with the dorsal spine and 

was interpreted as representing overall animal size (height). The derived component scores were 

compared among the main effects using an ANOVAR for both stage III and V larvae, and 

showed no significant differences for larval morphology (S4); there was however significant 

brood effects (S3 and S4).   
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4. Discussion 350 

Our results demonstrate that the survivorship and development of stone crab larvae were sensitive 

to elevated temperature and pCO2. The detrimental effect of elevated temperature, however, was 

more than two times greater than elevated pCO2. The stone crabs sensitivity to acidified 

conditions was intriguing since species that typically live in habitats that experience variability in 

pH conditions (i.e., coastal areas after runoff events) might be at an advantage for adaptive 

responses to ocean acidification (Hofmann et al. 2010). For instance, some crustacean species 

such as the Tanner crab (Chionoecetes bairdi) also live in variable pH habitats, yet acidified 

conditions appear to have no substantial effect on larval survivorship (Long et al. 2016). During 

our study, field temperature ranged from 28.2–31.3℃ and pCO2 ranged from 392–596 µatm (pH 

range 7.95–8.18) at the ovigerous crab collection site. Despite this natural variability, larval 

mortality still increased during exposure to both elevated temperature and pCO2 treatments; 

however in combination they did not impact larval condition or morphology throughout 

development, which could indeed reflect some degree of tolerance. 
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 364 

4.1 Larval survival 365 

The elevated pCO2 (H30) treatment showed a decrease in survivorship resulting in individuals 

being 1.5 times more likely to experience mortality than the control, however, elevated 

temperature more than doubled the likelihood that an individual would die. The impact of 

elevated temperature showed the greatest impact on stone crab larval survivorship (regardless of 

pCO2), causing increases in mortality that were 3.3 (A32) and 3.7 (H32) times greater than the 

control (A30). Similar negative effects of elevated pCO2 have been reported for other crab 

species including juveniles of the red king crab, Paralithodes camtschaticus, and the Tanner crab, 

Chionoecetes bairdi (Long et al., 2013a), while elevated pCO2 and temperature negatively 
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impacted larvae of the spider crab, Hyas araneus (Walther et al., 2010). Larvae in our study only 

experienced a 2 °C increase in temperature; however, the significantly lower survivorship we 

observed agrees with previous stone crab work that reported higher larval mortality when 

temperatures reach 35 °C (Brown et al., 1992).  

 

Elevated temperature has long been cited as one of the most critical environmental factors that 

directly impacts crustacean metabolic rates, molt-stage duration, and development time (Costlow 

et al., 1960; Costlow and Bookhout, 1971). Although the physiological mechanisms contributing 

to the decrease in survival were not examined in this study, elevated temperature is known to 

impact metabolic activity, growth, circulation, and ventilator mechanisms among the different 

life stages of crustaceans (Frederich and Pörtner, 2000; Storch et al., 2011). Once an individual 

reaches its temperature threshold the organism moves into anaerobic metabolism which limits 

oxygen supply at the cellular level (Pörtner et al., 2005; Storch et al., 2011). Additionally, 

elevated temperatures are known to increase metabolism (Leffler, 1972; Arnberg et al., 2013). 

For example, the northern shrimp Pandalus borealis, showed a metabolic increase of ~20% when 

exposed to both higher temperatures and pCO2 conditions (Arnberg et al., 2013). The stress 

associated with molting in crustaceans can further add to metabolic demands, because molting is 

often accompanied by a large increase in oxygen consumption, resulting in a 2-fold increase in 

metabolism (Roberts, 1957; Leffler, 1972). High mortality at elevated temperatures could also be 

the result of larvae experiencing heat stress, which is suggested to disrupt enzymatic and 

hormonal systems that regulate the molt cycle (Anger, 1987). The stability and function of certain 

enzymes and proteins may not function at elevated temperatures or elevated pCO2, resulting in 

some pathways either not operating or working less efficiently (Somero, 1995; Hofmann and 

Todgham, 2010).  
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 398 

4.2 Molt-stage duration 399 

Development across all larval stages was predominately temperature dependent, which was 

indicated by a 13% and 14% shorter molt-stage duration in the H32 and A32 levels, respectively. 

A shorter molt-stage duration was expected, as higher temperature is known to accelerate molting 

in both larval and juvenile coastal and estuarine crustacean species like Callinectes sapidus 

(Leffler, 1972), Cancer irroratus (Johns, 1981), and Cancer magister (Kondzela and Shirley, 

1993). Coastal and estuarine crustaceans (i.e., Sesarma, Callinectes, Menippe spp.) exposed to 

elevated temperatures will experience an increase in metabolic processes, resulting in larvae 

progressing through each stage more quickly (Costlow et al., 1960; Ong and Costlow, 1970; 

Leffler, 1972). For example, increased seawater temperature will accelerate growth, until a 

threshold is reached, beyond which growth declines. However, rapid growth is also associated 

with physiological costs, such as depletion of energy reserves that may be required in later stages 

(Kurihara et al., 2008).  

 

The present study showed that exposure to elevated pCO2 also resulted in a significantly longer 

(~12%) molt-stage duration in stage-V larvae, therefore prolonging the transition into the post-

larval stage. Slower development under elevated seawater pCO2 has been previously reported for 

the larvae of the spider crab, H. araneus (Walther et al., 2010), and for the shrimp Palemon. 

pacificus (Kurihara et al., 2008). However, both of these studies observed significant delays in 

development only when CO2 levels were well above projections for the end of the next century (~ 

2000 μatm in Kurihara et al., 2008; 3000 μatm in Walther et al., 2010). The slight delay (~1 day) 

observed in the present study could increase the susceptibility of late-stage stone-crab larvae to 

planktotrophic predators. The lack of a significant delay in development, which lasts for several 
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days or weeks under elevated pCO2, suggests that pCO2 conditions forecast for 2100 will likely 

not have any significant biological impacts on stone crab larval development.    

 

422 

423 

424 

4.3 Larval weight 425 

Our results for the larval ash free dry weight (AFDW) do not support the hypothesis that larval 

condition was impacted by elevated pCO2 or elevated temperatures. We expected larval condition 

(AFDW) would be lower in acidified conditions; however this was not the case. This result was 

unexpected, and the reason for the indifference in AFDW is unknown, but could be related to 

conducting experiments during different years and from using larvae from different broods than 

in 2014 survivorship experiments. The observed within subject effects suggests significant 

variability among parents, and indicates that some broods were more tolerant to elevated pCO2 

and temperature than other broods. The brood-specific responses observed here are likely a 

consequence of variability among females (e.g., prior exposure to low pH conditions or genetic 

variation among broods) which could allow the species to be resilient to future ocean changes 

(Ceballos-Osuna et al., 2013; Carter et al., 2013). Previous work that quantified larval condition 

under elevated pCO2 and temperature scenarios for other Brachyuran crabs report similar patterns 

in both larval condition and survival as reported here. For instance, larval survivorship decreased 

in H. araneus, but larval lipid ratios showed no change under elevated pCO2 (380–3000 ppm) and 

elevated temperature (Walther et al., 2010). Additionally, the Tanner crab, C. bairdi also 

exhibited no significant change in larval-condition index, yet, juveniles elicited a 130% increase 

in mortality at elevated pCO2 (~800 µatm, pH = 7.8; Long et al., 2013b). Typically, reductions in 

larval condition and survivorship are associated with elevated pCO2 and elevated temperature, 

which affect metabolic processes that interfere with the function of certain pH-dependent 

enzymes or hormones necessary for molting. The CO2 diffuses into the larval body to acidify the 
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haemolymph (Pörtner et al., 2004). Such changes were hypothesized to occur in post-larvae of H. 

araneus that were exposed to OA and elevated temperatures, however, the AFDW results 

reported show no differences between treatments.     

446 

447 

448 

 449 

4.4 Larval morphology 450 

The morphology of stone crab larvae was also not affected by elevated pCO2 and temperature. 

This result is in contrast to other crustacean studies, which show that the larval morphology of 

red king crab P. camtschaticus (Long et al., 2013b) were 4% larger under acidified conditions. 

Our results suggest that the morphology of stone crab larvae will not be impacted by future 

changes in seawater pCO2 or temperature. However, there is potential for elevated pCO2 and 

temperature to impact the size, shape, and shell thickness, and hardness of post-larval and 

juvenile stages of stone crabs, given that some crustaceans incorporate greater amounts of 

calcium into the exoskeleton of late-life stages (Richards, 1958; Arnold et al., 2009; Walther et 

al.,  2011; Coffey et al., 2017). The lack of any differences in larval skeletal content among 

treatments is likely attributed to the molting process in larval crustaceans. During molting, 

2+ 
crustacean larvae inflate their body with the surrounding seawater, which permits Ca ions to 

permeate via diffusion across the thin exoskeleton of the larvae (Anger, 2001; Walther et al., 

2+
2011). Once larvae molt, and develop into post-larvae stages, a greater amount of Ca  is 

2+
embedded into the carapace with each progressive molt. The highest Ca  content is usually 

found in the oldest post-larvae stages and in juveniles (Arnold et al., 2009; Walther et al., 2011). 

Calcification has also been shown to increase with higher salinities in some crustaceans 

(Egilsdottir et al., 2009) regardless of pCO2 level; however, salinity in our experiments was 

similar at 35–37 across treatments. 
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Elevated seawater temperatures appear to have a greater impact on stone crabs than the effects of 

elevated pCO2, suggesting that some components of larval development may be tolerant to future 

changes in carbonate chemistry. The significant decline in survivorship observed at elevated 

seawater temperatures is especially concerning considering that seawater temperatures are 

predicted to increase at a faster rate than increases in pCO2 (IPCC, 2013). Historical trends 

st
already indicate that the rate of sea-surface warming, projected for the 21  century, is five times 

th
faster than the 0.6°C warming rate documented in the 20  century (Kerr, 2004). Additionally, 

some stone crab habitats, for example the Florida Keys, have experienced a 0.8 °C increase in sea 

surface temperature over the last century (Kuffner et al., 2012). Such conditions are potentially 

problematic for stone crabs since they are a subtropical species and already live close to their 

thermal limit, especially during the summer reproductive season. For instance, over the last few 

years some stone crab habitats in the Florida Keys have already experienced episodic increases in 

temperature (≥ 32℃; National Data Buoy Center, 2016) which could be contributing 

significantly to larval mortality. The continued increase in seawater temperatures projected for 

2100 may serve as a potential bottleneck for the population by reducing the number of larvae that 

survive. The susceptibility of stone crab larvae to elevated temperatures could therefore promote 

a northward range expansion as ocean temperatures continue to increase. Elevated seawater 

temperatures, however, are likely to cause a decline in the stone crab larval population in the 

absence of phenotypic or evolutionary adaptation (Long et al., 2013) and could threaten the 

future sustainability of the fishery. 
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Figure Captions 809 

Figure 1: Scanning electron microscope image of a stage V larva depicting the morphometric 

variables used in this study. Morphometric measurements included the telson spine (TS), dorsal 

spine (DS), rostrum spine (RS), carapace height (CH), carapace width (CW), tail length (TL), and 

whole length (WL). Image was taken at 37x, 5kV, and 30 SEI by Philip Gravinese. 

 

Figure 2. Cumulative survivorship of M. mercenaria larvae throughout larval development 

during exposure to different combinations of pCO2 and temperature. The 95% confidence 

intervals are indicated by the shaded regions. Larvae from eight different broods were used in the 

analyses (i.e., N = 8 replicates). Curves with different letters are significantly different at α = 

0.05. A30 (i.e., the control) represents the ambient pCO2 and ambient temperature treatment. H30 

is the elevated pCO2 and ambient temperature treatment. A32 is the ambient pCO2 and elevated 

temperature treatment, and H32 is the elevated pCO2 and elevated temperature treatment. 

 

Figure 3. Box and whiskers plot of stage-specific survivorship for M. mercenaria larvae during 

exposure to different combinations of pCO2 and temperature. Larvae from eight different broods 

were used in the analyses (i.e., N = 8 replicates). Boxes with similar letters are not significantly 

different from each other (ANOVAR). Control (white) is ambient CO2 and temperature, H30 

(blue) is the elevated pCO2 and ambient temperature treatment. A32 (light red) is the ambient 

pCO2 and elevated temperature treatment, and H32 (dark red) is the elevated pCO2 and elevated 

temperature treatment.  

 

Figure 4. Mean (days ±SE) molt stage duration of M. mercenaria larvae throughout larval 

development during exposure to different combinations of pCO2 and temperature. Larvae from 
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eight different broods were used in the analyses (i.e., N = 8 replicates). Letters above the bars 

represent differences between the treatments at α = 0.05. 
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	Abstract 
	Greenhouse gas emissions are increasing ocean temperatures and the partial pressure of CO2 (pCO2), resulting in more acidic waters. It is presently unknown how elevated temperature and pCO2 will influence the early life history stages of the majority of marine coastal species. We investigated the combined effect of elevated temperature (30°C control and 32°C treatment) and elevated pCO2 (450 µatm control and 1100 µatm treatment) on the (i) growth, (ii) survival, (iii) condition, and (iv) morphology of larva
	1. Introduction 
	At the current rate of fossil-fuel emissions, the partial pressure of CO2 in seawater (pCO2) is expected to increase from 400 µatm to 700–1000 µatm by the year 2100 (IPCC, 2013), resulting in a decrease in pH of 0.41 units. This process is often referred to as ocean acidification (Caldeira and Wickett, 2003). In addition, many coastal marine habitats are experiencing an accelerated rate of change in carbonate chemistry because of increased urbanization, coastal development, and wetland degradation (Bauer et
	(Widdicombe and Spicer, 2008; Melzner et al., 2009; Whiteley, 2011; Byrne, 2011). Early life-history stages can, however, exhibit more sensitivity to changing environmental conditions than adult conspecifics (Whiteley, 2011). For example, acidified seawater did not alter metabolic rates in the adult green porcelain crab Petrolisthes cinctipes (Paganini et al., 2014), however the conspecific embryos exhibited slower metabolic rates under the same treatment (Carter et al., 2013). Similarly, juvenile porcelain
	some crustacean larvae (i.e., Sesarma, Callinectes, Menippe spp.) by shortening molt-stage durations, reducing survivorship, and resulting in smaller individuals (Costlow et al., 1960; Ong and Costlow, 1970; Leffler, 1972). For example, early stage C. sapidus larvae exhibited a 15% decrease in survivorship when exposed to increased temperatures (Costlow and Bookhout 1960). Reductions in size under elevated temperatures are the result of individuals passing through larval development too quickly to accumulat
	seawater acidification. For example, stone crab embryonic development is slower and hatching success is reduced when embryos are exposed to lower ocean pH (Gravinese, 2018). Therefore, it is possible that other components of their life-cycle may also be sensitive. We tested the hypotheses that elevated pCO2 (~400 and 1100 μatm), elevated temperature (30°C and 32°C), and their combined effect results in reduced survivorship of stone-crab larvae. Because stone crabs (particularly those in coastal environments
	2. Materials and Methods 
	2.1 Stone crab ovigerous female collection 
	Ovigerous females were collected by Florida Fish and Wildlife using commercial stone crab traps near Pavilion Key (25°69.79 N, 81°35.51 W), Florida during the 2014 and 2015 summers (May–August). Females were immediately transported back to the University of Miami’s Rosenstiel School’s Ocean Acidification Laboratory and were maintained in ambient seawater conditions until larval release. In 2014, larvae that were hatched from 8 different broods were individually raised so that we could measure survivorship a
	and larvae from the same brood (i.e., the replicates) were divided among the treatments levels throughout all experiments.  
	2.2 Experimental design and ocean acidification (OA) system set-up 
	All experiments consisted of two fully-crossed treatment parameters (i.e., temperature and pCO2), each with two levels, resulting in a total of four different treatments. The two temperature levels were set at 30°C and 32°C. The lower (control) temperature was based on the mean summer sea surface temperature for the Long Key C-MAN station, in Florida Bay over 1992–2008 years (NOAA National Data Buoy Center, 2016). The upper temperature was based on IPCC (2013) sea-surface temperature projections for the end
	2.3 Seawater Carbonate Chemistry 
	To monitor the carbonate chemistry of the OA system, seawater samples were collected from both the holding reservoirs and from each experimental aquaria in 150 mL borosilicate bottles, and were immediately fixed with 100 μL of saturated mercuric chloride. Total alkalinity (AT) and dissolved inorganic carbon (DIC) were measured at NOAA’s Atlantic Oceanographic and Metrological Ocean Acidification Laboratory using Apollo SciTech instruments (AS-ALK2 and AS-C3, respectively) as described by Enochs et al. (2015
	experimental season. All control/ambient pCO2 levels were within ranges reported for other stone crab habitats (Millero et al., 2001; Dufroe, 2012). 
	2.4 Stone crab larval survivorship and molt-stage duration  
	Experiments determining the effects of elevated temperature and pCO2 on larval survivorship and molt-stage duration (MSD) were conducted on larvae reared individually in clear acrylic compartmentalized boxes (80 ml), with the plastic bottoms replaced with nylon mesh (190 µm). Each box was kept in its own water bath to maintain constant experimental temperatures. Larvae (n = 46 per treatment level) from each ovigerous female were placed within each treatment level (i.e., A30, H30, A32, and H32) and were moni
	2.5 Larval Condition 
	Stage I and Stage II larvae never experienced the full experimental treatment conditions (due to gradual ramping up to experimental set points), and therefore, were not used in AFDW analyses. The AFDW experiments used larvae from different broods (i.e., 13 broods for stage III, and 8 broods for stage V), and each brood served as a replicate. A pooled sample, consisting of 50 individuals, was used for stage III larvae, and a pooled sample, consisting of 10 individuals, were used for stage V larvae. The larva
	2.6 Larval morphology 
	To determine the potential effect of elevated pCO2 and temperature on larval morphology (n ~ 10) stage III and V larvae were harvested and fixed in 3% glutaraldehyde in 0.1 M phosphate buffer at room temperature (Felgenhauer and Abele, 1983). Stage I and stage II larvae never experienced the full experimental treatment set points, and therefore were not used in morphological analyses in these experiments. After preservation of larvae, a Scanning Electron Microscope (SEM; JEOL JSM-6380LV) was used to take di
	or size among treatments, larvae were photographed so that the telson spine length (TS), rostrum spine length (RS), dorsal spine length (DS), carapace width (CW), carapace height (CH), whole length (WL), and tail length (TL) could be measured (ImageJ software, Schneider et al., 2012) from digital SEM micrographs (37x, Figure 1). Prior to measurement, digital images of stage III and V larvae were calibrated in ImageJ by determining the number of pixels within the micrometer scale provided by the SEM. The CW 
	2.7 Data analysis 
	The effect of different treatments on survivorship was determined using a failure-time analysis (Cox Proportional Hazard Model), with larval death serving as the ‘event’, and time since the beginning of the experiment as the ‘time until an event occurs’. The Cox regression coefficients (i.e., hazard ratio) were used to estimate the likelihood an individual larva would die under the experimental treatments. Survivorship and MSD experiments were replicated using larvae from eight independent broods (N = 8). T
	variance (ANOVAR) was then run on the ranked data, with temperature and CO2 as the main effects, and brood as the within subject factor.  The results were Bonferroni corrected to set the alpha level at 0.01, because the stage-specific analysis required five separate tests. Differences among treatments in the molt-stage duration for each larval stage were determined using an ANOVAR with temperature and CO2 as the main effects, and brood as the within subject factor.   Differences in the mean DW and AFDW for 
	3. Results  
	3.1 Seawater Chemistry 
	After pCO2 and temperature were gradually increased to the experimental set points, the control’s (i.e., ambient temperature and ambient pCO2; hereafter will be referred to as A30) mean pCO2 levels were maintained within a narrow range among all treatments (Table 1). Temperature, salinity, and total alkalinity (AT) also showed little variability after the gradual increase to the 
	experimental set points, for the 2014 and 2015 summer research seasons (Table 1). The pH was lower in the elevated pCO2 treatments (Table 1).  
	3.2 Larval survival and development  
	Survivorship to megalopae was significantly reduced in all treatments (A32, H30, H32) relative to the control (A30, LR7 = 272.3, P < 0.001; Fig. 1). There was a 19% absolute decrease in larval survival between the H30 and the control (relative decrease of 37% between treatments; Fig. 1). The Cox regression coefficients (i.e., hazard ratios) were used to express the likelihood an individual would die under the experimental treatments. The hazard ratios indicated that larvae raised in the H30 treatment were 1
	Fig. 2), and there was a significant within-subject (female) effect in stage-I larvae (S1). Stage II larvae had a significantly lower median stage-specific survival in the A32 and H32 treatments (i.e., both elevated temperature treatments were ~5.5% lower than the ambient temperature treatments; S1). Relative to the control, the median stage-specific survival for stage III larvae was also significantly lower by 17% and 31% in the A32 and H32 treatments, respectively (S1, Fig. 2). Stage IV larvae exhibited s
	3.3 Larval Condition 
	The mean DW for stage-III larvae (13 broods used as replicates) showed no significant difference -1among treatments and on average ranged from 88.5–96.0 µg individual (S2). There was no interaction effect between temperature and pCO2 for stage III DW; however, there was a significant within subject effect (S2). AFDW for stage-III larvae (13 broods used as replicates) 
	-1was within a narrow range (56.0–59.0 µg individual), and did not differ among treatments (S2). There was no interaction effect between temperature and pCO2 for stage III AFDW; however, there was a significant within-subject effect (S2). The DW for stage V larvae (8 broods used as replicates) showed no significant difference among treatments and on average ranged from 241–-1277 µg individual (S2). There was no interaction effect between temperature and pCO2 for stage -1V DW; however, there was a significan
	3.4 Larval Morphology  
	PCA analysis on the morphological measurements of stage III larvae resulted in three principle components (PC’s) representing 91.9% of the variation in the data (S3). The PC 1 loadings were negatively associated with all morphometric measurements, and were interpreted as representative of the overall larval size (whole length). The loadings for PC 2 were associated with the dorsal spine, whereas the loadings for PC 3 were interpreted as being the carapace height. PCA analysis on the morphological measuremen
	4. Discussion 
	Our results demonstrate that the survivorship and development of stone crab larvae were sensitive to elevated temperature and pCO2. The detrimental effect of elevated temperature, however, was more than two times greater than elevated pCO2. The stone crabs sensitivity to acidified conditions was intriguing since species that typically live in habitats that experience variability in pH conditions (i.e., coastal areas after runoff events) might be at an advantage for adaptive responses to ocean acidification 
	4.1 Larval survival 
	The elevated pCO2 (H30) treatment showed a decrease in survivorship resulting in individuals being 1.5 times more likely to experience mortality than the control, however, elevated temperature more than doubled the likelihood that an individual would die. The impact of elevated temperature showed the greatest impact on stone crab larval survivorship (regardless of pCO2), causing increases in mortality that were 3.3 (A32) and 3.7 (H32) times greater than the control (A30). Similar negative effects of elevate
	impacted larvae of the spider crab, Hyas araneus (Walther et al., 2010). Larvae in our study only experienced a 2 °C increase in temperature; however, the significantly lower survivorship we observed agrees with previous stone crab work that reported higher larval mortality when temperatures reach 35 °C (Brown et al., 1992).   Elevated temperature has long been cited as one of the most critical environmental factors that directly impacts crustacean metabolic rates, molt-stage duration, and development time 
	4.2 Molt-stage duration 
	Development across all larval stages was predominately temperature dependent, which was indicated by a 13% and 14% shorter molt-stage duration in the H32 and A32 levels, respectively. A shorter molt-stage duration was expected, as higher temperature is known to accelerate molting in both larval and juvenile coastal and estuarine crustacean species like Callinectes sapidus (Leffler, 1972), Cancer irroratus (Johns, 1981), and Cancer magister (Kondzela and Shirley, 1993). Coastal and estuarine crustaceans (i.e
	days or weeks under elevated pCO2, suggests that pCO2 conditions forecast for 2100 will likely not have any significant biological impacts on stone crab larval development.    
	4.3 Larval weight 
	Our results for the larval ash free dry weight (AFDW) do not support the hypothesis that larval condition was impacted by elevated pCO2 or elevated temperatures. We expected larval condition (AFDW) would be lower in acidified conditions; however this was not the case. This result was unexpected, and the reason for the indifference in AFDW is unknown, but could be related to conducting experiments during different years and from using larvae from different broods than in 2014 survivorship experiments. The ob
	haemolymph (Pörtner et al., 2004). Such changes were hypothesized to occur in post-larvae of H. araneus that were exposed to OA and elevated temperatures, however, the AFDW results reported show no differences between treatments.     
	4.4 Larval morphology 
	The morphology of stone crab larvae was also not affected by elevated pCO2 and temperature. This result is in contrast to other crustacean studies, which show that the larval morphology of red king crab P. camtschaticus (Long et al., 2013b) were 4% larger under acidified conditions. Our results suggest that the morphology of stone crab larvae will not be impacted by future changes in seawater pCO2 or temperature. However, there is potential for elevated pCO2 and temperature to impact the size, shape, and sh
	 Elevated seawater temperatures appear to have a greater impact on stone crabs than the effects of elevated pCO2, suggesting that some components of larval development may be tolerant to future changes in carbonate chemistry. The significant decline in survivorship observed at elevated seawater temperatures is especially concerning considering that seawater temperatures are predicted to increase at a faster rate than increases in pCO2 (IPCC, 2013). Historical trends stalready indicate that the rate of sea-s
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